Integration in Hermite spaces of analytic functions

نویسندگان

  • Christian Irrgeher
  • Peter Kritzer
  • Gunther Leobacher
  • Friedrich Pillichshammer
چکیده

We study integration in a class of Hilbert spaces of analytic functions defined on the Rs. The functions are characterized by the property that their Hermite coefficients decay exponentially fast. We use Gauss-Hermite integration rules and show that the errors of our algorithms decay exponentially fast. Furthermore, we study tractability in terms of s and log ε−1 and give necessary and sufficient conditions under which we achieve exponential convergence with EC-weak, EC-polynomial, and EC-strong polynomial tractability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

The Sugeno fuzzy integral of concave functions

The fuzzy integrals are a kind of fuzzy measures acting on fuzzy sets. They can be viewed as an average membershipvalue of fuzzy sets. The value of the fuzzy integral in a decision making environment where uncertainty is presenthas been well established. Most of the integral inequalities studied in the fuzzy integration context normally considerconditions such as monotonicity or comonotonicity....

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

Analysis of Linear Two-Dimensional Equations by Hermitian Meshfree Collocation Method

Meshfree Collocation Method is used to solve linear two-dimensional problems. This method differs from weak form methods such as Galerkin method and no cellular networking and no numerical  integration. Therefore, this method has no constraints such as the integration accuracy and the integration CPU time, and equations can be isolated directly from the strong form of governing PDE. The fundame...

متن کامل

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some  inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015